COPA - cancer outlier profile analysis
نویسندگان
چکیده
UNLABELLED Chromosomal translocations are common in cancer, and in some cases may be causal in the progression of the disease. Using microarrays, in which the expression of thousands of genes are simultaneously measured, could potentially allow one to detect recurrent translocations for a particular cancer type. Standard statistical tests, such as the t-test are not suited for detecting these translocations, but a simple test based on robust centering and scaling of the data to help detect outlier samples, followed by a search for pairs of samples with mutually exclusive outliers, may be used to find genes involved in recurrent translocations. We have implemented this method, termed Cancer Outlier Profile Analysis (COPA) in an R package (that we call the copa package), and show its applicability on a publicly available dataset. AVAILABILITY http://www.bioconductor.org
منابع مشابه
LSOSS: Detection of Cancer Outlier Differential Gene Expression
Detection of differential gene expression using microarray technology has received considerable interest in cancer research studies. Recently, many researchers discovered that oncogenes may be activated in some but not all samples in a given disease group. The existing statistical tools for detecting differentially expressed genes in a subset of the disease group mainly include cancer outlier p...
متن کاملA Comparison of Methods for Data-Driven Cancer Outlier Discovery, and An Application Scheme to Semisupervised Predictive Biomarker Discovery
A core component in translational cancer research is biomarker discovery using gene expression profiling for clinical tumors. This is often based on cell line experiments; one population is sampled for inference in another. We disclose a semisupervised workflow focusing on binary (switch-like, bimodal) informative genes that are likely cancer relevant, to mitigate this non-statistical problem. ...
متن کاملSIBER: systematic identification of bimodally expressed genes using RNAseq data
MOTIVATION Identification of bimodally expressed genes is an important task, as genes with bimodal expression play important roles in cell differentiation, signalling and disease progression. Several useful algorithms have been developed to identify bimodal genes from microarray data. Currently, no method can deal with data from next-generation sequencing, which is emerging as a replacement tec...
متن کاملPADGE: analysis of heterogeneous patterns of differential gene expression.
UNLABELLED We have devised a novel analysis approach, percentile analysis for differential gene expression (PADGE), for identifying genes differentially expressed between two groups of heterogeneous samples. PADGE was designed to compare expression profiles of sample subgroups at a series of percentile cutoffs and to examine the trend of relative expression between sample groups as expression l...
متن کاملUnsupervised Outlier Profile Analysis
In much of the analysis of high-throughput genomic data, "interesting" genes have been selected based on assessment of differential expression between two groups or generalizations thereof. Most of the literature focuses on changes in mean expression or the entire distribution. In this article, we explore the use of C(α) tests, which have been applied in other genomic data settings. Their use f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 22 23 شماره
صفحات -
تاریخ انتشار 2006